Statement of Work Requirements Verification Table - Addendum

Requirement	Success Criteria	Verification
1.1	No specific design requirement	Vehicle attains supersonic
	exists for the altitude. The	flight while remaining
	altitude is a function of	under maximum allowable
	obtaining supersonic flight for	altitude of 20,000 ft. AGL
	the supersonic payloads	
1.1.1.	Obtaining the predicted altitude	Record post-flight altimeter
	of 15,800ft.	to determine max altitude
		attained.
1.1.2.	The Range Safety Officer	Predicted altitude is below
	approves the altitude by the	the specified maximum.
	CDR	
1.2	The vehicle shall use a COTS	Both altimeters will be
	barometric altimeter for	PerfectFlite StratoLoggers
	recording official altitude.	
1.2.1	Altimeter successfully recovered	Successful recovery of
	and presented to NASA official	Prometheus following
	while still beeping	competition launch.
1.2.2	The vehicle shall have additional	Two altimeters will be used
	altimeters to control vehicle	to successfully trigger the
	electronics and payload	recovery system. The
	experiments	competition altimeter and a
		redundant device.
1.2.2.1	Present altimeter to be marked	Designate official altimeter
	as official altimeter.	ahead of time.
1.2.2.2	Altimeter successfully recovered	See requirement 1.2.1
	and presented to NASA official	
	while still beeping	
1.2.2.3	Silence all other altimeters in	All altimeters will have a
	the rocket.	dedicated power source
1.2.3	See Sub Requirements	See Sub Requirements
1.2.3.1	The official altimeter is	See requirement 1.2.1
	presented to the RSO	
	undamaged while still reporting	
	an altitude	
1.2.3.2	The team will report to the RSO	Team will develop and
	in a timely manner after	follow specified launch day
	recovery of the vehicle	procedures.
1.2.3.3	Current predictions do not	Simulations in Rocksim

Vehicle Requirements

	exceed 16,000 feet AGL	predict max altitude of
		15,800 ft. AGL
1.2.3.4	CRW current plans to have a	Travel arrangements are
	team in Utah for the	being made to transport a
	competition flight of	launch team, at minimum.
	Prometheus	,
1.3	Rocket will be designed to land	Simulations and testing of
	slow enough so no hardware is	recovery system design for
	damaged	proper function and to
		minimize impact energy.
1.4	Payloads and recover system	Ground testing of payload
	will be simple in design and	and recovery system
	allow the rocket to be	designs to ensure quick
	assembled in 2 hours from	assembly. Launch
	waiver opening.	procedures detailing all
		steps in assembly.
1.5	Vehicle shall remain in launch	Batteries have been
	configuration for at least one	selected so that individual
	hour.	systems remain functional
		for 1.75 hours
1.6	The vehicle shall be able to be	Motors selected for
	launched by a 12V ignition	subscale and full scale
	system that will be provided	flights are commercially
		available and can be ignited
		using a 12V system
1.7	Vehicle shall not require any	The ignition system
	external circuitry to initiate	provided by NASA will be
	launch	the only circuitry external
		to the vehicle
1.8	The vehicle shall use a COTS	The selected motor will be
	motor propulsion system using	a CTI M4770- Vmax
	АРСР	
1.9	Prometheus will not have a	Prometheus will not have a
	pressure vessel.	pressure vessel.
1.10	See Sub Requirements	See Sub Requirements
1.10.1	The vehicle and recovery system	The rocket will be visually
	will be flown and operate	inspected and flight data
	correctly during a full-scale	will be used to confirm
	flight.	recover system results.
1.10.2	See Sub Requirements	See Sub Requirements
1.10.2.1	See Sub Requirements	See Sub Requirements
1.10.2.1.1	If all payloads are not prepared	Mass simulators will be
	mass simulators will be placed in	based on latest know

	the approximate location as the	expected payload mass
	unfinished payload.	
1.10.2.2	Prometheus contains no	Prometheus contains no
	external surface changing	external surface changing
	payloads or energy	payloads or energy
	management systems	management systems
1.10.3	A full-scale flight with a full-scale	The full-scale flight will
	or near full-scale motor will be	validate launch calculations,
	flown to validate design and test	payload design, vehicle
	payloads.	design, and recovery
		system design.
1.10.4	A full-scale flight with complete	A full-scale flight with all
	ballast shall be flown before the	payloads in flight ready
	FRR.	configuration or with
		simulated weight will be
		flown and safely recovered.
1.10.5	After competition of a full-scale	Should anything need to be
	flight the system will be	changed, concurrence must
	completely designed and not	be obtained from the Range
	require a redesign.	Safety Officer (RSO) priory
		to design change.

Recovery System Requirements

Requirement	Success Criteria	Verification
2.1	Use a dual deploy system that	Test recovery system during
	can bring the rocket down fast	full-scale to validate
	enough to keep drift under	parachute calculations. Use
	5000ft for a 20 mph wind.	actual drift to extrapolate
		drift at 20 mph.
2.2	A completely custom made	No parachutes will be
	parachute designed and	purchased for the full-scale
	manufactured by the UAH	or final rocket.
	Charger Rocket Works team	
2.3	The highest landing energy will	Verify landing energy
	belong to the large body of the	calculations from full-scale
	rocket and will be maintained	launch accelerometers at
	near the current prediction of	landing.
	33 ft.*lb	
2.4	The recovery system circuit will	The circuits will be tested in
	be designed to be completely	ground tests and during
	self-contained and isolated from	full-scale launch to validate
	the payload circuits.	independence.
2.5	Two commercial altimeters will	Fly two altimeters for the
	provide redundancy to insure	full-scale flight to verify
	recovery system deployment.	both systems deploy during
	Both the drogue and main will	flight.
	have redundant altimeters.	
2.6	Dual arming switches to insure	Full-scale flight will insure
	both altimeters are armed and	that both altimeters can be
	keep both systems separate	accessed from outside the
	from each other.	rocket from a separate
		arming switch.
2.7	Each altimeter will have a	Will be Tested during full-
	dedicated power supply to	scale flight to insure that
	completely isolate each	each altimeter is powered
	recovery system and prevent a	correctly from their
	single failure point.	independent batteries.
2.8	Pull pins will be used and the	Full-scale test will insure
	system will be designed to be on	the pull pins activate both
	once the pins are removed.	altimeters and that the
2.0		altimeters remain on.
2.9	Shear pins will keep the single	The shear pins will be
	deploy point (Nosecone)	checked to insure they can
	attached. The shear pins will be	be removed before launch
	removable to access the	and they will be tested in

	recovery system.	shearing during the full-
		scale launch and ground
		tests.
2.10	See Sub Requirements	See Sub Requirements
2.10.1	The rocket will return tethered	The GPS will be tested
	together. The rocket will have	during the full-scale launch
	GPS broadcasting in real time	and tested during ground
	during the descent and have a	test. The dog tracker will be
	dog tracker as a backup	tested during ground test
	solution.	and full-scale.
2.10.2	The tracking system will be	The tracking system will be
	functional and integrated with	tested during full-scale
	the Landing Hazard Detection	flight to insure correct
	System.	integration with landing
		hazard detection system.
2.11	See Sub Requirements	See Sub Requirements
2.11.1	The recovery system will be	Tested during full-scale
	located in a different	flight to insure radio does
	compartment from the LHDS,	not power on until clear of
	the only broadcasting system.	the rocket.
2.11.2	No onboard devices will be	Tested during full-scale
	transmitting until the recovery	flight to insure radio does
	system has already deployed.	not power on until clear of
		the rocket.
2.11.3	The recovery system will be	Ground tests will insure
	separated from energy	recovery system is properly
	producing payloads and the	isolated from energy
	energy producing payload will	producing payloads and
	reside in a faraday cage.	tested during full-scale
		flight.
2.11.4	No devices will interfere with	Several sub-scale tests,
	the operation of the recovery	ground tests, and full-scale
	system electronics through any	test will insure the recovery
	means.	system remains un affected
		by other payloads.

Payload Requirements

Requirement	Success Criteria	Verification
3.1	See Sub Requirements	See Sub Requirements
3.1.1	Landing Hazard Detection	Test Landing Hazard
	System will include a COTS	Detection System during
	camera to scan the ground	full-scale flight and testing
	during descent for hazards and	using google images and
	use one of three different	"hazards" on a wall.
	methods or a combination of	
	them to detect hazards.	
3.1.2	Use a Beaglebone to provide	The Beaglebone White has
	sufficient processing to analyze	a Sitara AM335x Cortex A8
	the image in real time by the	ARM processor, and will be
	computer on the rocket.	tested before the competition
		flight to ensure proper data
212		transmission.
3.1.3	The presence of hazards or lack	Tests of full scale flight
	thereof will be transmitted back	hardware will be conducted
	to a ground station in real time	on the ground and on the
	using a COTS radio solution	full scale test flight within
	connected to the Beaglebone.	acceptable limitations of
		the hardware and expected
2.2	Fly additional ray deads 2.2.1.2	flight conditions
3.2	Fly additional payloads 3.2.1.2 and 3.2.2.4	Ensure that each payload
	anu 3.2.2.4	meets its separate payload
2.2	Design neulaged to have easily	requirements from the CDR
3.3	Design payload to have easily	Ensure that payload is
	changeable batteries and	recovered from full-scale
	remain undamaged on landing	launch and is completely
	so the system can be easily re-	intact and ready to be re-
	flown without requiring repairs.	flown.
3.4	3.4 and sub requirements are	3.4 and sub requirements
	not applicable	are not applicable

General Requirements

Requirement	Success Criteria	Verification
4.1	Launch and safety checklist	Launch checklist will be
	made and tested for full-scale	tested and run through
	launch.	during full-scale launch to
		insure completeness.
4.2	A successful mission flown and	Although external sources
	built completely by students at	shall be used for advice, all
	Charger Rocket Works of	construction, design work,
	University of Alabama in	and writing will be
	Huntsville	performed by students.
4.3	Project plan will contain details	A final project binder
	concerning all aspects of the	containing purchases,
	project and lay out a path	timeline, organization
	forward till the project's	chart, outreach details, and
	completion.	more shall be made before
		the flight day.
4.4	Mentor will be identified and be	Mentor identified by PDR.
	certified at the appropriate level	Achieved required level.
	by full-scale launch.	
4.5	All team members, instructors,	Completed. List submitted
	and mentors will be identified to	before CDR.
	NASA including Foreign	
-	nationals	
4.6	Foreign Nationals will be	Completed. List submitted
	identified by PDR and informed	before PDR.
	of potential separation during	
	launch week activities	
4.7	Follow all generally accepted	Check with RSO before each
	safety procedures as well as any	launch and insure they
	additional safety procedures	approved of the flight.
	that are imposed by the RSO at	
4.8	any local club launches.	Boquest foodback from
4.8	Complete an outreach packet that is modular in nature and	Request feedback from outreach students and
	easily adaptable to different age	educators to evaluate
	groups to reach as many students as possible. Lay	worth of outreach program and improve. Put outreach
	groundwork for future teams to	slides and plans on flash
	build upon outreach. Reach at	drive and give to instructor
	least 200 students at least half	to present to next class.
	of those being middle schools.	
4.9	A new custom hand crafted	Use online HTML verifiers
4.3		

	HTML5 website will be designed	to insure HTML5
	for the Charger Rocket Works	compliance and test
	team. This will be used to spread	document download to
	information concerning the	insure they work correctly.
	team and its efforts in both	Check website and insure
	outreach and project. Allow easy	completeness by launch
	access to all documentation	day.
	made by the team. Website	
	should be complete by Launch	
	Day with only flight results left	
	to post.	
4.9.1	Post documents to website in an	PDR: Completed
	easily accessible manner. Email	CDR: Completed
	NASA when documents are	FRR: April 18 th 8:00am
	posted.	